Blog Menu

The Impact of DfAM

June 16, 2018

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,education,manufacturing — Terry Wohlers @ 11:22

Note: Associate consultant and DfAM expert Olaf Diegel authored the following.

Over the past three decades, the bulk of research in additive manufacturing has largely focused on AM processes and materials. In the last three years, organizations have begun to appreciate the importance of design for additive manufacturing (DfAM). Funding agencies are increasingly supporting DfAM, and companies are asking for courses on the subject. Over the past 12 months, I have given more than 20 DfAM courses for companies wanting to deepen their knowledge and understanding.

When a part is designed for conventional manufacturing, it is usually more expensive to produce by AM in typical production quantities. This is largely because AM processes are relatively slow compared to conventional methods of manufacturing. However, when a part is redesigned for AM, costs can be competitive or even lower, depending on quantities. Research for Wohlers Report 2018 revealed that 46% of the cost of a metal part is tied to pre- and post-processing. A large part of this cost often involves the production and removal of the support structures, also referred to as anchors. A well-designed part can greatly reduce the need for this support material, which dramatically reduces cost.

Good methods of DfAM can add value to products by making them substantially lighter in weight and enhancing performance using topology optimization, generative design, and lattice structures. Conventionally manufactured products made up of many simple parts can be redesigned to consolidate the assembly into a single part. This reduces part numbers, inventory, and assembly costs. Using methods of mass-customization, products can conform to the individual needs of customers without substantially increasing cost. Knowing how and when to use these techniques require designers and engineers to learn how to design for AM.

One of the biggest barriers to the widespread adoption of AM is the lack of knowledge and skills among the design and engineering workforce. Only through DfAM education, training, and best practices will we see significant progress toward the use of AM for production applications. Some organizations are beginning to understand its importance, but a vast amount of work is ahead.

Editor’s note: Wohlers Associates is conducting a three-day course on DfAM in the Rocky Mountains of Colorado, with Olaf Diegel as lead instructor. Click here to learn more.

Design for AM in Montreal

May 20, 2018

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,education — Terry Wohlers @ 13:28

Design for additive manufacturing (DfAM) is a key to unlocking the power of AM. Neglecting to understand its importance may present a problem for companies hoping to tap into the technology’s potential. It is quite possibly the most challenging piece of the AM puzzle and requires far more than what meets the eye.

To justify the use of AM for production applications, a well-advised company will perform an analysis on the cost to manufacture the design, both conventionally and by AM. Doing so can determine the “breakeven” point of AM versus a conventional method of manufacturing. The effort seeks to determine the volume at which it costs the same to make the part using either method. If you are producing parts up to the breakeven point, AM may be a candidate for production. The higher the breakeven point, the more attractive AM usually becomes.

If a design is not modified for AM, the breakeven point may be too low, meaning that AM is probably not suitable. If a part or assembly is redesigned to take advantage of AM, the breakeven point may be higher, and in some cases, dramatically higher. Consider, for example, the possible economic impact of consolidating many individual parts into one, as shown in the following relatively simple example.

DfAM is the subject of a hands-on course being offered June 12-14, 2018 in Montreal, Canada. Up to 20 practicing professionals will gather to learn the latest tools and methods of part consolidation, topology optimization, lattice structures, and biomimicry. The course will uncover important design rules and guidelines (e.g., thinnest walls and smallest holes possible, depending on the process and material), part orientation, and support material. These elements of design can impact build time, cost, and trial ‘n error. They can result in a reduction in the number of suppliers, manufacturing processes, tooling, inventory, assembly, labor, maintenance, and certification paperwork. Good DfAM tools and methods result in parts that use less material and are lighter in weight, with scrap reduced to a minimum.

Wohlers Associates and the Québec Industrial Research Centre (CRIQ) have partnered to offer this important DfAM course. If you want to benefit from what AM has to offer for production applications, contact Martin Lavoie at dfammtl2018@gmail.com to register for the course.

Important Events in AM

April 22, 2018

Last week, I attended the 20th Annual FIRPA Conference in Espoo, Finland, which is about 20 km (12 miles) from Helsinki. The event included some excellent presentations, including one from Jonas Eriksson of Siemens Industrial Turbomachinery AB. Eriksson discussed the production of parts by additive manufacturing for land-based gas turbine engines. To date, the company has redesigned many parts for metal AM and used the technology to produce more than 1,000 burner tips. The use of AM has resulted in a time reduction from 26 weeks to just three. As many as 60 people are now focused on AM at the company, with a goal of making metal AM as simple as 2D printing on paper.

Another very interesting presentation was given by Jyrki Saarinen of the University of Eastern Finland. His group worked closely with Dutch company Luxexcel to produce an AM machine with 1,000 inkjet nozzles for the printing of optical lenses in PMMA. The surface finish of the printed lenses is <2 nm RMS (less than 2 billionths of a meter), so no post-processing is required. The machine is capable of producing 40 lenses per hour, each measuring 10 mm in diameter x 2.5 mm in height, so the process is relatively fast.

I also had the privilege of visiting two world-class companies in Finland. The first was KONE, an $11 billion manufacturer of elevators, escalators, exterior revolving doors, and security entrances for commercial buildings. The company and its products are impressive. I also visited UPM, a $12.3 billion company with a strong position in paper, pulp, plywood, composites, and bio products. The company recently entered the AM industry by introducing a material extrusion filament product consisting of cellulose fiber and PLA.

Last week’s trip to Finland could not have gone better, thanks to the fine people that organized the meetings and very successful 20th annual conference. This week, the focus is on RAPID + TCT 2018, which begins tomorrow and goes through Thursday in Fort Worth, Texas. This event marks the 26th annual conference and exposition, and I’m proud to say that I have not missed a single one of them. Attendance has grown by ~2.3 times over the past four years and exhibit space has grown by ~4.5 times over the same period. If you are interested in attending one of the very best events in all things additive manufacturing, 3D printing, and 3D scanning, go to Fort Worth this week. You will not regret it.

formnext 2017

November 18, 2017

In only its third year, formnext has quickly become the additive manufacturing event in Europe to see and to be seen. I attended last year’s formnext and shared here the impression it made. In my view, it was the most impactful additive manufacturing industry event in Europe that I had attended in my 30+ years of going to them. This week’s four-day event, held again in Frankfurt, Germany, has topped it. Three of us from Wohlers Associates were there.

With few exceptions, the most important AM companies worldwide exhibited their products and services at the Messe Frankfurt Convention Center. The exhibition filled most of two large halls. Conspicuous by its absence, one fast-growing AM system manufacturer did not exhibit, and I’m reasonably certain that it is regretting the decision.

Similar to last year, all things metal was in force at formnext. Desktop Metal, EOS, GE Additive, Renishaw, SLM Solutions, and many others showed their latest machines and parts in large, elaborate exhibits. Even HP showed parts from a metal 3D printing technology it is planning to introduce next year.

The scale of some of the new machines is striking, along with the large and complex parts coming from them. The quality of exhibits, people, and announcements at formnext signaled how far the AM industry has developed and matured in the recent past. It was great to meet so many engineers, top managers, and visitors from around the world.

Congrats to Mesago for the impressive formnext exhibition and to the TCT Group for the expertly-organized four-day conference. The formnext event grew from nothing to something very special in three short years. Other events have taken a decade or longer to reach this point and many never have. Next year’s formnext is November 13-16, again in Frankfurt, so add it to your calendar now and begin to make plans. It has become THE place in Europe to conduct business in the AM industry.

CSU’s Idea2Product Lab

October 9, 2017

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,education — Terry Wohlers @ 09:53

Note: The following was authored by Ray Huff, manager of the I2P lab at Colorado State University. He is an intern at Wohlers Associates.

At universities worldwide, 3D printing is unlocking doors previously unavailable to students, staff, and others. Five years ago, David Prawel introduced Colorado State University to 3D printing with a single RepRap 3D printer in the mechanical engineering department. News of the new technology spread quickly, and soon Prawel spun off a dedicated lab providing 3D printing education and services. The lab was modeled after Idea 2 Product (I2P) labs originally launched in South Africa by professor Deon de Beer.

I was introduced to the I2P lab in mid 2014. I had spent the first half of that year managing a fledgling web marketing startup in Denver, and was looking to shift into a more dynamic industry. After some preliminary research into the 3D printing industry in Colorado, I came across an open house at Colorado State hosted by the I2P lab. It included a symposium featuring Terry Wohlers, Andy Christensen, and others in Colorado. I was blown away by the amazing, cutting edge developments in my backyard. It was then I knew I had to find a way into this industry. A year later, while working at then 3D-printing startup Aleph Objects, I was encouraged to pursue a degree in engineering, and that brought me back to Colorado State and the I2P lab.

I accepted an offer to serve as lab manager during my first year and was immediately exposed to more developmental projects than I could have imagined. Entrepreneurs came to the lab seeking help in 3D modeling and proof-of-concept development. Researchers designed custom apparatuses for their experiments and fabricated them on the spot. Educators learned to think creatively in completely new ways to clearly demonstrate difficult concepts. Artists came to modify and replicate their models digitally and physically using 3D scanning and printing. Veterinary surgeons brought CT scan data to create bone and organ analogies in preparation for surgical procedures. Countless engineering students began to produce models of their designs from classes and projects. I found that with a little bit of education and guidance, people of all backgrounds can go further and faster with their ideas and innovations than ever before.

Today, the I2P lab looks vastly different than it did in the days of a single student running one 3D printer. Over the past two years, the I2P lab customer base has doubled to more than 700 registered users. The lab boasts 20 3D printers of both material extrusion and vat photopolymerization technologies. Users come from across campus and the community to make their dreams into realities.

As these technologies mature and become less expensive to implement, labs like I2P are developing and multiplying in nearly every corner of education. Already, maker spaces, schools at many levels, and even libraries are benefiting from the creative freedom offered by 3D printing, 3D scanning, and design software to empower the community. They are being challenged to transform ideas into realities that affect and improve lives.

It’s All About the People

August 14, 2017

Filed under: education,life,manufacturing — Terry Wohlers @ 07:27

Note: The following was authored by Doug Rhoda, CEO of DMS (Colorado Springs, Colorado). Rhoda was directly responsible for hiring more than 200 interns while CEO of Wolf Robotics (Fort Collins, Colorado). Today, an estimated 75% of Wolf’s permanent employees came from internships.

In my personal leadership and management journey, people that make up a team are the distinguishing factor of any business. My former mentor, now deceased, would coach me as I was growing a struggling robotic welding company, and he would say “It’s all about the people.”

Getting the right people “on the bus” is one of the most important tasks of a leader. Although not quick or expedient, I have found that building long-term mutual beneficial relationships with local universities and developing internship programs have been critical to getting the best people.

In spite of some of the headlines today, I have found reason for optimism with today’s young people. I have had the privilege of hiring and coaching so many millennials that are bright, hard-working, and capable. Like anyone, they are looking for autonomy (not to be micro-managed), mastery (to learn), and purpose in their work.

Our recipe, refined over the years, challenges young people. Our student interns start on the factory floor, getting their hands dirty, and learning our machines from the ground up. While they are in the factory, they are being evaluated by senior factory floor leaders to determine whether the individual has the right work ethic, attitude, and ability to learn.

An internship is like an extended interview. It’s an interview of the student by our staff, and it’s an interview of the company by the student. During the internship, the intern can determine whether the company and industry are of interest for long-term employment.

If the person is right and the economics justify it, we will hire graduating interns into full-time positions. In the case of engineering students, they are hired into a field service role, where they learn how the machines are applied and what customers value. We have found that after their customer service stint, the former interns discern where their passion and interests lie, and self-select—with our involvement—key roles in the business. Among them are design engineering, project management, and software development. Because of their strong foundation in the business, they contribute in unique and precious ways.

Talent recruited and developed through internships have been critical success factors in the businesses in which I have had the honor of being responsible. We will continue to invest in our internship programs to grow our business because it’s all about the people.

DfAM at Materialise

June 4, 2017

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,education,event — Terry Wohlers @ 13:27

What does a major German car manufacturer, surgeon from Brazil, producer of food-making equipment, and large toy maker have in common? All are interested in methods of design for additive manufacturing (DfAM). Twenty-five people from five continents came together last week to explore, discuss, and learn how to design products for AM. Also represented were manufacturers of pumps, audio systems for cars, data projection systems, packaging equipment, heavy industrial products, and large vacuum systems. Key service providers from South Africa and China also participated.

The advanced, three-day course from Wohlers Associates took a deep dive into methods of DfAM, including the consolidation of many parts into one to reduce tooling, manufacturing, and inventory costs. The training, held in Leuven, Belgium, provided guidance on design optimization for reducing the use of material and making parts as light as possible. The participants used their own CAD software, along with Inspire from solidThinking for topology optimization and Magics Structures from Materialise for lattices and meshes.

Materialise hosted the event and provided five DfAM experts in a 75-minute panel session. The company also gave an outstanding 90-minute tour of its impressive facilities. It was helpful to those in attendance to see the wide range of machines, parts, and new businesses at Materialise. One example is the production of Yuniku 3D scanning systems for custom eyewear. The prescription eyeglasses are designed so that the optics are located in the optimal location relative to the eyes. They come with beautifully-designed frames that are produced by AM at Materialise.

We are thrilled with the participant feedback and glad the training went so well. Even so, we plan to make a number of adjustments prior to offering it again. A big thank you goes to those who attended from around the world and to the fine people at Materialise for contributing to its success. We could not have partnered with a better company.

25 Years of RAPID

May 6, 2017

Next week is RAPID+TCT 2017, North America’s largest conference and exposition on additive manufacturing (AM) and 3D printing. It also includes CAD, 3D scanning, and other design and manufacturing products and services. The event marks the 25th year for me to attend the event. Although I don’t have hard proof, I’m reasonably certain I stand alone in that category, for what it’s worth. SME, the organization that launched the event in May 1993, has generously invited me to speak at RAPID for 25 consecutive years.

RAPID has been the go-to event in this region of the world for all things 3D printing. The multi-day, multi-track conference has always been the strength of the event and a big reason why people attend. With more than 330 exhibitors from around the world, the exposition is now a very serious part of it. UK-based Rapid News Communications Group, with its strong TCT brand, has partnered with SME for the first time. RAPID+TCT has the potential to grow significantly as organizations around the world expand their use of AM.

As usual, I’m looking forward to next week. I like to attend the conference sessions and see new products and services in the exposition. Meeting people, however, is a major reason why many choose to attend. Business is conducted, ideas are explored, and new friendships are forged. The people in attendance have been a big part of why I like to participate year after year. If you’re going to be in Pittsburgh next week to attend RAPID+TCT, I look forward to seeing you there!

3D Veterans Bootcamp

September 12, 2016

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,education,life — Terry Wohlers @ 08:43

An interesting program for U.S. veterans concluded on Friday of last week in San Antonio, Texas. A start-up organization, named 3D Veterans, was formed to train veterans in CAD and 3D printing for high-tech American jobs. The first six-week “bootcamp” involved 13 enthusiastic veterans out of 70 applicants. I was lucky enough to witness them in action on Wednesday as they were wrapping up several intriguing final class projects—the culmination of expert instruction and hands-on learning. The projects were aimed at designing and 3D printing devices that would help less fortunate fellow veterans. I was moved by this giving of time, creativity, and energy to other veterans.

The 3D Veterans organization was founded by Michael Moncada and David Schnepp, with subsequent involvement from Andy Miller, Wayne Dudding, and others. I first met Moncada, a veteran himself, at Inside 3D Printing in New York City in April, and what he told me about the program got my attention. Among the current partners and sponsors are America Makes, Autodesk, and the Department of Veterans Affairs. Google.org, Google’s chartable arm, is the primary sponsor. The veterans completed the program with new skills in using Autodesk’s Fusion 360 CAD software, which was used for most of the design work.

3dveterans

I was with the staff and student veterans for about 2.5 hours. I especially wanted to meet the veterans and see their work, and I was lucky enough to get fairly in-depth explanations from six of them. Len, 59, designed a knee brace that he hopes will be more effective and fit more comfortably under a pair of slacks. The available 3D printers and materials did not allow him to complete and test his design, but I like the path he has taken, coupled with his passion. One of his comments to me said it all. “This is the most exciting time of my life,” referring to the class, the knowledge and skills he has gained, and where all of it could take him in the future. Wow!

Another student veteran, Deborah, designed a brace for those with carpal tunnel syndrome. She said the ones on the market work with mixed results. She went on to say, “The course has been challenging and exciting and something I needed.” Other projects involved 1) the use of a transcutaneous electric nerve stimulation device to treat pain, 2) an exoskeleton device for therapy of finger and hand movement, 3) a device to hold a straw in place in a drinking cup or glass, and 4) a versatile cup holder that can be mounted just about anywhere, including onto wheel chairs.

I like this program a lot. Credit goes to Moncada, his colleagues, and the program’s supporters. Gratitude also goes to the participating veterans for enrolling in the program and giving back to fellow veterans. It was a privilege to see, up close, the veterans at work. Plans are underway to expand it into other locations across the U.S. in coming months. If you are interested in supporting this outstanding program or hiring one of the 13 veterans, contact Michael Moncada at michael@3dveterans.com.

SME’s RAPID 2016

May 21, 2016

I attended this week’s RAPID 2016 in Orlando, Florida. As usual, the conference and exposition were excellent. An estimated 5,190 attended the event, compared to 4,512 last year. Exhibit space increased to 4,153 sq meters (44,700 sq ft), up from 2,903 sq meters (31,250 sq ft) last year. The following are a few highlights of the event:

● HP introduced and showed its Jet Fusion 3200 and 4200 3D printers for the first time publicly. The machines are capable of addressing 340 million voxels per second in thermoplastic materials, such as PA12. They are 10 times faster and operate at half the cost of competitive systems, according to HP. The systems are mostly open, which means they support third-party materials at competitive prices.

heart

● Renishaw showed its new RenAM 500M machine that produces metal parts. The engineering is impressive. Meanwhile, 3D Systems displayed its new ProX DMP 320 machine for producing metal parts. It is based on technology developed by Belgium-based LayerWise, which was acquired by 3D Systems in 2014.

● Xjet of Israel introduced its NanoParticle Jetting technology. It uses inkjet printing to produce parts in stainless steel and silver. The parts are small, but the feature detail is good.

● Event organizer SME hosted a fashion show that featured entirely new 3D-printed designs. Many were impressive. I have now attended five fashion shows that highlight 3D-printed products and it’s remarkable how far the designs have advanced in a few years.

fashion-show

Congrats to SME for another great event, which continues to improve year after year. With increasing applications of additive manufacturing and 3D printing for final part production, the event has the opportunity to grow much larger in the future.

RAPID 2017 will be held May 8-11 in Pittsburgh, Pennsylvania. Add it to your calendar and plan to attend.

Next Page »