Blog Menu

Design for AM in Montreal

May 20, 2018

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,education — Terry Wohlers @ 13:28

Design for additive manufacturing (DfAM) is a key to unlocking the power of AM. Neglecting to understand its importance may present a problem for companies hoping to tap into the technology’s potential. It is quite possibly the most challenging piece of the AM puzzle and requires far more than what meets the eye.

To justify the use of AM for production applications, a well-advised company will perform an analysis on the cost to manufacture the design, both conventionally and by AM. Doing so can determine the “breakeven” point of AM versus a conventional method of manufacturing. The effort seeks to determine the volume at which it costs the same to make the part using either method. If you are producing parts up to the breakeven point, AM may be a candidate for production. The higher the breakeven point, the more attractive AM usually becomes.

If a design is not modified for AM, the breakeven point may be too low, meaning that AM is probably not suitable. If a part or assembly is redesigned to take advantage of AM, the breakeven point may be higher, and in some cases, dramatically higher. Consider, for example, the possible economic impact of consolidating many individual parts into one, as shown in the following relatively simple example.

DfAM is the subject of a hands-on course being offered June 12-14, 2018 in Montreal, Canada. Up to 20 practicing professionals will gather to learn the latest tools and methods of part consolidation, topology optimization, lattice structures, and biomimicry. The course will uncover important design rules and guidelines (e.g., thinnest walls and smallest holes possible, depending on the process and material), part orientation, and support material. These elements of design can impact build time, cost, and trial ‘n error. They can result in a reduction in the number of suppliers, manufacturing processes, tooling, inventory, assembly, labor, maintenance, and certification paperwork. Good DfAM tools and methods result in parts that use less material and are lighter in weight, with scrap reduced to a minimum.

Wohlers Associates and the Québec Industrial Research Centre (CRIQ) have partnered to offer this important DfAM course. If you want to benefit from what AM has to offer for production applications, contact Martin Lavoie at dfammtl2018@gmail.com to register for the course.

Small Batch Production at Avid

May 8, 2018

Filed under: 3D printing,additive manufacturing,CAD/CAM/CAE,manufacturing — Terry Wohlers @ 10:35

Note: Ray Huff, intern at Wohlers Associates, authored the following.

Two weeks ago, I visited Avid Product Development, a design, prototyping, and small batch manufacturing firm in Loveland, Colorado. In recent years, Avid has strategically invested in additive manufacturing equipment to scale part production for its customers. Among these technologies are material extrusion machines from Stratasys, photopolymer-based printers from Formlabs, and Multi Jet Fusion machines from HP.

The number of end-use parts being manufactured by Avid makes the company stand out. Doug Collins, co-owner of Avid, commented that the addition of the HP equipment has greatly increased the company’s capacity for building production parts. Recently, Avid received an order for 100 parts that were designed for injection molding. CNC machining the parts was an option, but it would have taken too much time, been very expensive, and wasted a lot of material. Instead, they were 3D printed overnight, dyed black, and shipped the next day. Nesting software from Materialise was used to reduce print time, and fast cooling on the HP post-processing station helped to speed things along. With some added sweat and hustle, the team had the parts out the door as promised.

Doug was eager to show us parts made for Vestas, a leading manufacturer of large wind turbines for power generation. Vestas ordered a batch of polymer brackets that are permanently attached to the wind turbine blades to aid in the alignment and assembly of the parts. Wanting to test the designs before production, Vestas sent multiple iterations for Avid to build. Once the designs were finalized, orders were placed for hundreds of parts to bridge the gap of time while injection-mold tooling was being produced.

Weeks before the visit, a friend had sent me a threaded leveling foot for her new kitchen stove. The feet were designed for low countertops, and were 50 mm (2 inches) too short for the stove to be level with her countertop. I redesigned the foot, sent the model to Avid, picked up the four parts when I visited, and mailed them to my friend in California. The parts fit perfectly. The project showed me that in a matter of days, parts can be designed for a new application, produced, and tested across multiple cities and teams. In future cases like this one, we could further iterate based on feedback, if necessary, and then produce a small production batch of the part. We could even market the product and manufacture it on demand, without a need to keep a single physical part in stock.

Avid and other companies are making workflows like this possible for single product designers and companies of all sizes. Many organizations have been doing this for 20+ years, but easier access to good tools and machines, combined with a decline in cost, is what makes it different today. 3D printing is opening the door to countless new business opportunities and startup companies that were previously unthinkable.